4 resultados para seasonal variation

em DigitalCommons@The Texas Medical Center


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Seasonal variation in menarche, menstrual cycle length and menopause was investigated using Tremin Trust data. Too, self-reported hot flash data for women with natural and surgically-induced menopause were analyzed for rhythms.^ Menarche data from approximately 600 U.S. women born between 1940 and 1970 revealed a 6-month rhythm (first acrophase in January, double amplitude of 58%M). A notable shift from a December-January peak in menarche for those born in the 1940s and 1950s to an August-September peak for those born in the 1960s was observed. Groups of girls 8-14 and 15-17 yr old at menarche exhibited a seasonal difference in the pattern of menarche occurrence of about 6 months in relation to each other. Girls experiencing menarche during August-October were statistically significantly younger than those experiencing it at other times. Season of birth was not associated with season of menarche.^ The lengths of approximately 150,000 menstrual intervals of U.S. women were analyzed for seasonality. Menstrual intervals possibly disturbed by natural (e.g., childbirth) or other events (e.g., surgery, medication) were excluded. No 6- or 12-month rhythmicities were found for specific interval lengths (14-24, 25-31 and 32-56 days) or ages in relation to menstrual interval (9-11, 12-13, 15-19, 20-24, 25-39, 40-44 and 44 yr old and older).^ Hot flash data of 14 women experiencing natural menopause (NM) and 11 experiencing surgically-induced menopause (SIM) did not differ in frequency of hot flashes. Hot flashes in NM women exhibited 12- and 8-hr, but not 24-hr rhythmicities. Hot flashes in SIM women exhibited 24- and 12-hr, but not 8-hr, rhythmicities. Regardless of type of menopause, women with a peak frequency in hot flashes during the morning (0400 through 0950) were distinguishable from those with such in the evening (1600 through 2159).^ Data from approximately 200 U.S. women revealed a 6-month rhythm in menopause with first peak in May. No significant 12-month variation in menopause was detected by Cosinor analysis. Season of birth and age at menopause were not associated with season of menopause. Age at menopause declined significantly over the years for women born between 1907 and 1926, inclusive. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An investigation of (a) month/season-of-birth as a risk factor and (b) month/season-of-treatment initation as a prognostic factor in acute lymphoblastic leukemia (ALL) in children, 0-15 years of age, was conducted. The study population used was that of the Surveillance, Epidemiology, and End Results (SEER) program of the National Cancer Institute and included children diagnosed and treated for ALL from 1973-1986. Two separate sets of analyses using different exclusion criteria led to similar results. Specifically, the inability to reject the null hypothesis of no significant difference in the variation of monthly/seasonal incidence rates among children residing within the 10 SEER sites using either cosinor analysis or one-way analysis of variance. No association was established between month/season of treatment initiation and survival in ALL among children using either Kaplan-Meier or cosinor analysis. In separate Kaplan-Meier analyses, age, gender, and treatment type were each found to be significant univariate prognostic factors for survival, however. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of circadian variation on susceptibility to the chemical induction of cancer was assessed utilizing the mouse pulmonary adenoma bioassay. Different groups of male A/Jax mice (standardized for rhythm analysis with light from 0600-1800 and darkness from 1800-0600) each received a single timed i.p. injection of urethan (Bioassay I: 0.25, 0.5 or 1.0 mg/g body weight; Bioassay II: 0.75, 1.0, 1.25 mg/g body weight; Bioassay III: 1.0 mg/g body weight) at the following times, 0100, 0500, 0900, 1300, 1700 or 2100. Mice were sacrificed 16 weeks after treatment. The tumorigenic effect of urethan on the lungs (lung surface pulmonary adenomas) was assessed. In addition, mortality, body weight changes and the anesthetic effect of urethan were determined. The rhythmic pattern of DNA synthesis in the lung and the comparative rhythmic pattern in the liver were assessed using a tritiated thymidine incorporation assay.^ In the first adenoma bioassay, the lung tumorigenic response in mice given the highest dose of urethan exhibited a 12-hour rhythm with a major peak in tumor yield at 0100 and a secondary peak at 1300; reduced yields occurred at 0500-0900 and 2100. The second adenoma bioassay, studied at a 6-month seasonal divergence in time from the first study showed a peak at 1300 but not at 0100. The mice from the third adenoma bioassay, studied at an 11-month seasonal divergence in time from the 2nd study showed an increase in tumor yield during the rest cycle (0900-1700).^ This study found a definite suggestion of a low amplitude rhythm in susceptibility to urethan induced effects. The acute toxic and pharmacological effects correlated to exhibit a maximal effect during dark hours (activity span). This rhythmicity might be explained by an alteration in the amplitude of hepatic metabolism. The chronic carcinogenic response exhibited an opposite pattern. Urethan induced tumor response was greater during daylight hours (rest cycle). This correlated with the slight elevation in DNA synthetic activity found in the lung and liver which might be responsible for the increase in carcinogenic response. (Abstract shortened with permission of author.) ^